If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-4X-3129=0
a = 1; b = -4; c = -3129;
Δ = b2-4ac
Δ = -42-4·1·(-3129)
Δ = 12532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12532}=\sqrt{4*3133}=\sqrt{4}*\sqrt{3133}=2\sqrt{3133}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3133}}{2*1}=\frac{4-2\sqrt{3133}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3133}}{2*1}=\frac{4+2\sqrt{3133}}{2} $
| 18q-16q+5q+3=10 | | 1/2n+3/4=1 | | 0.338x=85 | | 4/3=2u | | x/8.2=0.7 | | (2*x+1)*(x^2+2)=0 | | (2x+2)=18 | | x-4.8=18.9 | | 12x+2+142-2x=180 | | 5x-(3-x)=27 | | -13c+14c=12 | | 2m-9=95 | | 15+10x=420 | | 25=2m+118 | | 12+32x=420 | | -18x+17x=-11 | | -6k+7k=-8 | | 2t+-3t=5 | | 2=2x3-4,3x3+2x2=8 | | K-6k+-16=19 | | 9x+12-6x+3=3x+15 | | -1.7m=85 | | 12+15x=420 | | 1=–z+5=6 | | 12.5=-4/3x+19.83 | | 3y+y-3=17 | | 1=–z+56 | | 5c-4-2c+1=c+11 | | 3v=-10.5 | | 6-6x=48 | | 15+32x=420 | | x/3+x/4+1=x/2. |